Artigo modelo (não publicado) - Favor não compartilhar!

Usando métodos computacionais para melhorar a produção de biocombustíveis

Diego Mariano 1 00

1 Programa Interunidades de Pós-Graduação em Bioinformática da UFMG, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil.

Resumo. O petróleo ainda é a principal fonte de energia mundial, mas seu uso causa grandes impactos ambientais e ele não é renovável. Uma alternativa promissora são os biocombustíveis, produzidos a partir de materiais vegetais e menos poluentes que os combustíveis fósseis. Contudo, seu alto custo de produção ainda é um desafio. Para superar essa limitação, cientistas têm utilizado computadores para desenvolver e aperfeiçoar produtos biotecnológicos que aumentem a eficiência e reduzam os custos da produção de biocombustíveis. Neste artigo, apresentamos como a computação pode contribuir para esse avanço.

Palavras-chave: bioinformática; biocombustíveis; computação.

1. Introdução

ISSN: 2764-8273

Os combustíveis fósseis, como o petróleo, são amplamente usados para gerar energia, movimentar veículos e produzir plásticos. No entanto, sua formação leva milhões de anos e depende da decomposição de organismos em ambientes de alta pressão. Além disso, quando queimados, liberam grandes quantidades de dióxido de carbono, contribuindo significativamente para o aquecimento global [1].

Os biocombustíveis representam uma alternativa mais sustentável, pois são produzidos a partir de matéria orgânica, ou seja, plantas como milho, soja e cana-de-açúcar. Por serem renováveis e menos poluentes, podem ser gerados continuamente [2]. Apesar disso, seu custo de produção ainda é elevado devido à complexidade dos processos biotecnológicos envolvidos, o que faz com que muitos ainda considerem o petróleo economicamente mais viável, desconsiderando seus impactos ambientais.

Nos últimos anos, pesquisas vêm buscando otimizar a produção de biocombustíveis, especialmente a partir da cana-de-açúcar. O açúcar extraído do caldo da planta é fermentado para gerar bioetanol, mas grande parte da biomassa residual permanece sem aproveitamento. Estudos brasileiros indicam que, se esse material fosse totalmente utilizado, a produção poderia dobrar [3]. Assim, o combustível obtido do resíduo é chamado de biocombustível de 2ª geração.

Um dos passos mais importantes desse processo é a sacarificação, em que enzimas quebram a biomassa para liberar açúcares fermentáveis. Essas enzimas, formadas por cadeias de aminoácidos, aceleram as reações químicas que degradam a matéria vegetal. Como diferentes enzimas apresentam eficiências distintas [5], melhorar seu desempenho é essencial para reduzir custos e aumentar a produtividade.

Nesse contexto, os computadores têm papel crucial. Por meio de simulações e modelagem molecular, eles permitem identificar as características estruturais de enzimas mais eficientes, ajudando cientistas a projetar versões aprimoradas por engenharia genética. Assim,

a bioinformática e o uso de algoritmos se tornam aliados fundamentais na busca por uma produção de biocombustíveis mais sustentável e acessível.

2. A como os computadores estão fazendo a diferença?

Os cientistas utilizam a engenharia genética para modificar enzimas e torná-las mais eficientes em acelerar reações químicas. No entanto, testar manualmente todas as possíveis mutações é inviável, pois uma única enzima pode gerar bilhões de combinações. Para contornar isso, os computadores são empregados na simulação de mutações e na previsão das mais promissoras para experimentos de laboratório. Programas especializados conseguem modelar as estruturas moleculares das enzimas a partir de suas sequências de DNA e até usar placas gráficas - normalmente voltadas a jogos - para visualizar o funcionamento das enzimas mutantes em tempo real [4].

3. Algoritmo: uma palavra complexa para uma coisa simples

Os computadores são ferramentas poderosas, mas precisam de instruções precisas para executar tarefas - essas instruções são chamadas de **algoritmos**. No estudo de enzimas, os algoritmos permitem analisar sua estrutura atômica e gerar um padrão de assinatura estrutural, semelhante a uma impressão digital, que descreve como os átomos estão organizados e interagem entre si. Como a forma e a disposição desses átomos determinam a função e a eficiência da enzima, os cientistas usam representações matemáticas dessas assinaturas para comparar diferentes moléculas [6].

Com base nessas assinaturas, é possível calcular a semelhança entre enzimas e propor mutações que tornem as menos eficientes mais parecidas com as de melhor desempenho. Quanto mais próximas as assinaturas estruturais, mais semelhantes tendem a ser suas funções. Essa ideia é ilustrada na Figura 1, que mostra como enzimas eficientes e mutantes podem ser comparadas por meio da distância entre seus padrões de assinatura - por exemplo, indicando que a enzima rosa se assemelha mais à enzima azul (eficiente) do que à verde (menos eficiente).

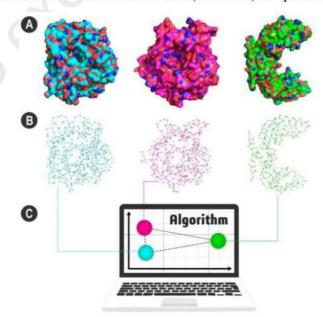


Figura 1. Utilizando inteligência artificial para comparar estruturas de proteínas. Fonte: [7].

4. Como os computadores comparam enzimas mutantes?

Imagine que cada enzima seja um ponto em um grande mapa do céu. Enzimas parecidas aparecem próximas umas das outras, como estrelas formando constelações. O computador aprende a reconhecer esses "desenhos" ao comparar as distâncias entre os pontos - quanto mais próximas estiverem, mais parecidas são suas funções.

Agora imagine que podemos mover uma estrela de uma constelação para outra. Isso é como simular mutações em uma enzima: o computador muda pequenas partes de sua estrutura e verifica se ela fica mais parecida com as enzimas que funcionam melhor. Quando uma mutação faz a enzima se aproximar do grupo das mais eficientes, ela é escolhida para ser testada em laboratório - acelerando um processo que, na natureza, levaria milhões de anos.

5. Conclusão

Nos últimos anos, diversos estudos buscaram aprimorar enzimas usadas na produção de biocombustíveis, mas os testes laboratoriais são caros e demorados. As simulações computacionais permitem realizar milhões de testes em segundos, oferecendo resultados preliminares que orientam experimentos mais promissores. Criar algoritmos para aplicações biológicas não é difícil quando se compreende o problema e domina-se uma linguagem de programação, como Python. Os computadores impulsionaram as ciências da vida, possibilitando avanços em biocombustíveis, alimentos e medicamentos. Para continuar essa revolução, precisamos de profissionais com formação em computação e biologia — talvez você seja um deles!

Agradecimento. Os autores agradecem às agências de fomento: CAPES, CNPq e FAPEMIG.

Conflito de interesses. Este texto foi adaptado do artigo "Using Computers to Improve Biofuel Production" [7] publicado pela Frontiers for Young Minds em 2022 (doi: 10.3389/frym.2022.751195). Licença CC BY.

6. Referências

- 1. Tester, J. W. 2005. Sustainable Energy. Cambridge, MA: MIT Press.
- Luterbacher, C., and Luterbacher, J. 2015. Break it down! How scientists are making fuel out of plants.
 Front. Young Minds. 3:10. doi: 10.3389/frym.2015.00010
- 3. Santos, F. A., de Queiróz, J. H., Colodette, J. L., Fernandes, S. A., Guimarães, V.M., and Rezende. S. T. 2012. Potential of sugarcane straw for ethanol production. Quim. Nova 35:1004–10.
- 4. Costa, L. S. C., Mariano, D. C. B., Rocha, R. E. O., Kraml, J., da Silveira, C. H., Liedl, K. R., et al. 2019. Molecular dynamics gives new insights into the glucose tolerance and inhibition mechanisms on β -glucosidases. Molecules 24:3215. doi: 10.3390/molecules24183215
- 5. Mariano, D. C. B., Leite, C., Santos, L. H. S., Marins, L. F., Machado, K. S., Machado, K. S., et al. 2017. Characterization of glucose-tolerant β-glucosidases used in biofuel production under the bioinformatics perspective: a systematic review. Genet. Mol. Res. 16:1–19. doi: 10.4238/gmr16039740
- Mariano, D. C.B., Santos, L. H., Machado, K. S., Werhli, A. V., de Lima, L. H. F., andde Melo-Minardi, R. C. 2019. A computational method to propose mutations in enzymes based on Structural Signature Variation (SSV). Int. J. Mol. Sci. 20:333. doi: 10.3390/ijms20020333
- 7. Mariano D, Santos LH, Meleiro LP, de Lima LHF, Marins LF and de Melo-Minardi RC (2022) Using Computers to Improve Biofuel Production. Front. Young Minds. 10:751195. doi: 10.3389/frym.2022.751195